Asymptotics of Some Convolutional Recurrences
نویسندگان
چکیده
منابع مشابه
Asymptotics of Some Convolutional Recurrences
We study the asymptotic behavior of the terms in sequences satisfying recurrences of the form an = an−1 + n−d k=d f(n, k)akan−k where, very roughly speaking, f(n, k) behaves like a product of reciprocals of binomial coefficients. Some examples of such sequences from map enumerations, Airy constants, and Painlevé I equations are discussed in detail. 1 Main results There are many examples in the ...
متن کاملAsymptotics of Linear Recurrences with Rational Coeecients Asymptotics of Linear Recurrences with Rational Coeecients Asymptotics of Linear Recurrences with Rational Coeecients
We give algorithms to compute the asymptotic expansion of solutions of linear recurrences with rational coeecients and rational initial conditions in polynomial time in the order of the recurrence. Asymptotique des r ecurrences lin eaires a coeecients rationnels R esum e Nous pr esentons des algorithmes pour le calcul du d eveloppement asymptotique des solutions de r ecurrences lin eaires a coe...
متن کاملAsymptotics of linear divide-and-conquer recurrences
Asymptotics of divide-and-conquer recurrences is usually dealt either with elementary inequalities or with sophisticated methods coming from analytic number theory. Philippe Dumas proposes a new approach based on linear algebra. The example of the complexity of Karatsuba’s algorithm is used as a guide in this summary. The complexity analysis of divide-and-conquer algorithms gives rise to recurr...
متن کاملExact Asymptotics of Divide-and-Conquer Recurrences
The divide-and-conquer principle is a majoi paradigm of algorithms design. Corresponding cost functions satisfy recurrences that directly reflect the decomposition mechanism used in the algorithm. This work shows that periodicity phenomena, often of a fractal nature, are ubiquitous in the performances of these algorithms. Mellin transforms and Dirichlet series are used to attain precise asympto...
متن کاملResurrecting the Asymptotics of Linear Recurrences *
Once on the forefront of mathematical research in America, the asymptotics of the solutions of linear recurrence equations is now almost forgotten, especially by the people who need it most, namely combinatorists and computer scientists. Here we present this theory in a concise form and give a number of examples that should enable the practicing combinatorist and computer scientist to include t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2010
ISSN: 1077-8926
DOI: 10.37236/273